
Wait-Hit: A high-performance
concurrency control protocol for any

scale
J. Waudby1, P. Ezhilchelvan1, J. Webber2

2 Dec 2021

1. Newcastle University
2. Neo4j

Database Concurrency Control

● Vital component for maintaining data integrity and achieving high
performance

● Well researched, 3 main categories;
○ Lock-based, 2PL
○ Timestamp-based, TO/MVCC
○ Validation-based, OCC

● Point 1: scale poorly in many-core and shared-nothing DBMSs
● Point 2: users desire seamlessly scaling and to avoid re-architecting their

systems
● Motivates the development of a protocol that performs well across multiple

scale points
2

Serialization Graph Testing (SGT)

● State-of-the-art protocol → Serialization Graph Testing
○ “No False Negatives: Accepting All Useful Schedules in a Fast Serializable Many-

Core System”, Durner and Neumann, ICDE, 2019
● Theory: an execution of transactions is serializable iff its corresponding conflict

graph is acyclic;
○ Two transactions conflict if both access the same data and at least 1 is write

● Protocol;
○ Transactions execute, annotating records with access metadata
○ Based on this detect conflicts and add edges to the serialization graph
○ At commit time, check if committing keeps the graph acyclic

● Benefit: best theoretical properties of accepting all valid schedules
● Summary: historically SGT deemed infeasible due to cycle checking, this paper

refutes this in the context of a many-core system outperforming classical and
modern protocols

3

Wait-Hit Protocol

● Problem: SGT cycle checking becomes infeasible again in distributed
shared-nothing system

● How can we simplify cycle checking?
○ If there is no incoming edge there can not be a cycle

TT
B

T
A

T
C

WR

WW

RW

T wants to
commit...

Wait Phase, if TA is;
● Committed then

continue

Hit Phase:
● Abort TB and TC
● Add TB, TC to Hit List

Wait Phase, if TA is;
● Committed then

continue
● Aborted then abort T

Wait Phase, if TA is;
● Committed then

continue
● Aborted then abort T
● Active then abort T

4

Wait-Hit Protocol

● Ensures conflict serializability → enforces no incoming edges from
active/aborted transactions via aborting self or predecessor

● Optimistic approach;
○ Transaction collects conflicting predecessors
○ Two-phased validation: wait phase and hit phase
○ Transaction commits/aborts

● 3 variants;
○ Basic
○ Optimised (many-core)
○ Distributed (shared nothing)

5

Basic Algorithm

3 data structures;

● Hit list (HL); list of transactions that if allowed to commit may result in non-
serializable behaviour

● Terminated list (TL); list of completed (aborted or committed) transactions
● ID generator (ID); generates unique IDs

2 per-transaction data structures;

● Predecessor upon read list (PR); when reading store id of transaction that
wrote that value - can include transactions that have made uncommitted writes
(at the time of reading)

● Predecessor upon write list (PW); when writing stores the id of all transactions
that wrote and read the record before it

6

Basic Algorithm cont.

● Initialisation; assign ID and initialise PR/PW
● Execution; execute reads and writes, detecting conflicts, and inserting into

PR/PW
● Commit Procedure for T;

○ Wait phase; for each p in PR;
○ If p is committed; continue
○ If p is aborted; abort T, append to TL, remove from HL (if exists)
○ Else p is active; employ zero-wait policy and abort T, append to TL,

remove from HL (if exists)
○ Hit phase;

○ If T is in HL; abort T, append to TL, remove from HL
○ Else, commit T; merge PW into HL and append T to TL

● Epoch-based garbage collector ensures that TL does not grow over time
7

Optimised Algorithm

Assume n cores each with a thread pinned to it, each has 2 thread-local data
structures;

● ID generator (ID); generates unique IDs (sequence number + thread id)
● Termination list (TL); list of transactions executed by this thread along

with its state (active, aborted, or committed)

Additionally, each thread has 2 per-transaction data structures;

● Predecessor upon read list (PR); when reading store id of transaction that
wrote that value - can include transactions that have made uncommitted
writes (at the time of reading)

● Predecessor upon write list (PW); when writing stores the id of all
transactions that wrote and read the record before it

8

Optimised Algorithm cont.

● Initialisation; thread receives T assigns ID and initialises PR/PW
● Execution; execute reads and writes, detecting conflicts, and inserting into

PR/PW
● Commit Procedure for T;

○ If T has been hit; then abort T
○ While T is active; for each p in PW

○ If p is terminated; then continue
○ Else p is active; so hit p

○ If T has been hit; then abort T
○ While T is active; for each p in PR

○ If p is committed; then continue
○ Else; abort T

○ Commit T
● Epoch-based garbage collector ensures TL on a thread does not grow over

time

9

Distributed Algorithm - System Model

● Database consists of S shards
● Each shard S has 𝚻 threads split into disjoint sets:

○ 𝚻H coordinates home transactions; transactions that begin locally
○ 𝚻R handles transactions that begin at a different server but operate on

local data
○ 𝚻R is managed by a surrogate process G

● Each transaction has a unique home shard (coordinator) and 0 or more
remote shards (validating shards)

10

Distributed Algorithm - Data Structures

● At shard S,
○ ∀τ∊𝚻H ;

○ Transaction ID generator; [shard id, thread id, sequence number]
○ Terminated list; indexed by transaction ID
○ PuR/W lists for each transaction; storing local conflicts

○ Surrogate G;
○ Thread pool; containing 𝚻R

○ Remote transaction status; the shard’s local view of transaction
termination status

○ PuR/W lists for each remote transaction; storing local conflicts

11

Distributed Wait-Hit Protocol Context

1. Initialisation;
a. Transaction is assigned a unique ID and data structures are initialised

2. Execution;
a. Transaction optimistically execute and PuR/W lists are populated

3. Commitment;
a. Preparation
b. Verification
c. Commit

12

Distributed Algorithm - Initialisation

● Coordinator (shard Si);
○ Receives BEGIN_TRANSACTION
○ Assign to some τi∊𝚻H

○ Assign ID = [Si,τi,i], set TL(i) = 0, and initialise PUR/W(i)
○ Sends REMOTE_TRANSACTION(ID,operations) to validating shards

● Validating shards (shard Sj);
○ Receives REMOTE_TRANSACTION(ID,operations)
○ Surrogate Gj,

○ Inserts [ID,0] into its remote map and initialises PUR/W(ID)
○ Assigns a thread τj from 𝚻R to execute operations

13

Distributed Algorithm - Execution

● Coordinator (shard Si);
○ τi executes operations on local data and updates local PuR/W(i)
○ Receives REMOTE_RESULTS(ID) from validating shards

● Validating shards (shard Sj);
○ τj executes operations on local data and updates local PuR/W(ID)
○ Send REMOTE_RESULTS(ID) to coordinator

14

Distributed Algorithm - Commitment (Preparation)

● Coordinator;
○ Send GET_READY(Ti) to all validating shards
○ While TL(i) ≠ -1 ∨ PuW(i) ≠ ∅; for each Tj ∊ PuW(i);

○ If TL(j) = 0; then set TL(j) = -1
○ Else; remove TL(j) from PuW(i)

○ If TL(i) ≠ -1; then wait for READY(Ti) from each validating shard
○ Else; send ABORT(Ti) to each validating shard

● Validating shards;
○ Receives GET_READY(Ti) from coordinator
○ While TL(i) ≠ -1 ∨ PuW(i) ≠ ∅; for each Tj ∊ PuW(i);

○ If TL(j) = 0; then set TL(j) = -1
○ Else; remove TL(j) from PuW(i)

○ If TL(i) ≠ -1; then send READY(Ti) to coordinator
○ Else; send ABORT(Ti) to coordinator

15

Distributed Algorithm - Commitment (Verification)

● Coordinator;
○ Receives READY(Ti) from all validating shards
○ Sends VERIFY(Ti) to validating shards
○ While TL(i) ≠ -1 ∨ PuR(i) ≠ ∅; for each Tj ∊ PuR(i);

○ If TL(j) = 1; then remove TL(j) from PuR(i)
○ Else; set TL(j) = -1

○ If TL(i) ≠ -1; then wait for VERIFIED(Ti) from each validating shard
○ Else; send ABORT(Ti) to each validating shard

● Validating shards;
○ Receives VERIFY(Ti) from coordinator
○ While TL(i) ≠ -1 ∨ PuR(i) ≠ ∅; for each Tj ∊ PuR(i);

○ If TL(j) = 1; then remove TL(j) from PuR(i)
○ Else; set TL(j) = -1

○ If TL(i) ≠ -1; then send VERIFIED(Ti) to coordinator
○ Else; send ABORT(Ti) to coordinator

16

Distributed Algorithm - Commitment (Commit)

● Coordinator;
○ Receives VERIFIED(Ti) from all validating shards
○ If TL(i) ≠ -1; set TL(i) = 1 and send COMMIT(Ti) to each validating shard
○ Else; send ABORT(Ti) to each validating shard

● Validating shards;
○ Receives COMMIT(Ti) from coordinator
○ Receives ABORT(Ti) to coordinator

17

Evaluation Framework

● Key components;
○ In-memory single versioned storage layer
○ Modular transaction scheduler
○ Extendable for multiple workloads; parameter generator, loader, and

stored procedures
○ Each core acts as independent client generating transactions

● Testing; validated using LDBC’s property-based ACID test suite
● Workloads; SmallBank, TATP
● Metrics; throughput, av. latency, abort rate

18

Evaluation Framework cont.

● Protocols;
○ 2PL: single-versioned, strict (locks held until commit point), read/write

locks (no predicate locks)
○ SGT: faithful attempt to implement that described in Durner et al (2019)
○ WH: Wait-hit protocol with epoch-based garbage collector
○ OWH: Optimised wait-hit protocol with epoch-based garbage collector
○ NOCC: No concurrency control

● Hardware: Azure Standard_D48_v3 instance with 48 cores and 192GB RAM

19

Throughput

20

Abort Rate

21

Average Latency

22

Future Work

● Extend framework to evaluate performance in a distributed shared-nothing
setting

● Investigate techniques to amortise 2PC costs;
○ Epoch-based commit [COCO]
○ Parallel commits [CockroachDB]
○ Determinism [Calvin]

● Investigate how to make the protocol Neo4j friendly 23
● Proof of correctness (first order logic)

23

Ω

24

